Abstract

Compared with the conventional constant-current constant-voltage (CC-CV) charging method, the multi-stage constant-current (MSCC) charging method offers advantages such as rapid charging speed and high charging efficiency. However, MSCC must find the optimal charging current profile (OCCP) in order to achieve the aforementioned benefits. Hence, in this paper, five bio-inspired optimization algorithms (BIOAs), including particle swarm optimization (PSO), modified PSO (MPSO), grey wolf optimization (GWO), modified GWO (MGWO), and the jellyfish search algorithm (JSA), are applied to solve the problem of searching for the OCCP of the MSCC. The best solution-finding procedure is run on the MATLAB platform developed based on minimizing the objective function of combining charging time (CT) and energy loss (EL) with a proportional weight. Without requiring numerous and time-consuming actual charge-and-discharge experiments, a wide range of searches can be quickly achieved only through the battery equivalent circuit model (ECM) established. The theoretical derivation and correctness are confirmed via the simulation and experimental results, which demonstrate that the OCCPs obtained by using the devised charging strategies possess the shortest CT and the best charging efficiency (CE), and among them, MPSO has the best fitness value (FV). Compared with the traditional CC-CV method, the experimental results show that the maximum improvement rates (IRs) of the studied approaches in terms of six charging performance evaluation indicators (CPEIs), including CT, charging capacity (CHC), CE, charging energy (CWh), average temperature rise (ATR), and FV, are 21.10%, 0.40%, 0.24%, 2.85%, 18.86%, and 68.99%, respectively. Furthermore, according to the comprehensive evaluation with CPEIs, the top three with the best overall performance are the JSA, MPSO, and GWO methods, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call