Abstract

The random output of renewable energy and the disorderly grid connection of electric vehicles (EV) will pose challenges to the safe and stable operation of the power system. In order to ensure the reliability and symmetry of the microgrid operation, this paper proposes a microgrid optimization scheduling strategy considering the access of EVs. Firstly, in order to reduce the impact of random access to EVs on power system operation, a schedulable model of an EV cluster is constructed based on the Minkowski sum. Then, based on the wavelet neural network (WNN), the renewable energy output is predicted to reduce the influence of its output fluctuation on the operation of the power system. Considering the operation constraints of each unit in the microgrid, the network active power loss and node voltage deviation are taken as the optimization objectives, and the established microgrid model is equivalently transformed via second-order cone relaxation to improve its solution efficiency. Based on network reconfiguration and flexible load participation in demand response, the economy and reliability of system operation are improved. Finally, the feasibility and effectiveness of the proposed method are verified based on the simulation examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call