Abstract

SummaryThe article examines the positional relationships and transmission/reception signal direction information within unmanned aerial vehicle (UAV) cluster formations. Considering the distinctive characteristics of various formation shapes (such as circle and cone), a study is conducted on the polar and Cartesian coordinate systems in neural network models to address position deviation issues arising in UAV formation flights. The passive receiving signal UAV positioning model is established by applying the triangular cosine theorem. Additionally, the position relationship model of the UAV is formulated using optimization theory. The article introduces a deep learning‐based deviated UAV adjustment algorithm designed to automatically adjust UAV positions. This is achieved by establishing a triangular relationship between the passive signal receiving UAV and other UAVs. The implementation involves C# programming and MATLAB visualization. The proposed method not only resolves UAV positioning and position adjustment challenges but also optimizes the adjustment strategy. This optimization leads to maximum savings in time and distance costs associated with sending and receiving signals among UAVs, thereby enhancing the overall performance of UAVs during flights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.