Abstract

AbstractIn view of the low recovery rate associated with water flooding, as well as the scaling problems caused by traditional alkali‐surfactant‐polymer flooding, the feasibility of using a betaine surfactant with high interfacial activity for chemical flooding of ordinary heavy oil was investigated. Aqueous solutions of oleic acid amide betaine (OAAB) with the mass concentration of 0.01% can reduce the oil–water interfacial tension to the ultralow level (10−3 mN m−1), making it suitable for chemical flooding. To solve the problem of high adsorption onto sandstone, static adsorption tests and dynamic adsorption tests were carried out. The results show that the weakly alkaline lignin can significantly reduce the adsorption quantity of OAAB by more than 40%, based on which, a compound‐flooding system of 0.1% partially hydrolyzed polyacrylamide (HPAM) + 0.1% OAAB +0.75% lignin was constructed. Compared with water flooding, the ultimate rate was enhanced by 20.4%, resulting in a final recovery rate of 53.9%. The study of oil displacement mechanism shows that the excellent ability to reduce the oil–water interfacial tension of OAAB can emulsify heavy oil to small droplets easily, exhibiting better capacity in oil displacement efficiency. The polymer can increase the viscosity of the aqueous phase, reduce the mobility ratio of water to oil, weaken the fingering effect, and improve the sweep efficiency. Lignin can not only reduce the adsorption quantity of betaine surfactant, but also promote the adsorption of OAAB onto the oil–water interface, leading to enhance the emulsification performance of OAAB and maintain the oil displacement efficiency effectively. Therefore, the surfactant‐polymer flooding system based on the betaine surfactant can be developed into an economically and technically feasible flooding technology suitable for ordinary heavy oil reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call