Abstract
To address the issues of fluid-solid coupling, instability in the liquid two-phase flow, poor computational efficiency, treating the free surface as a slip wall, and neglecting the movement of oil booms in simulating oil spill containment, this study adopts the Smoothed Particle Hydrodynamics (SPH) method to establish a numerical model for solid-liquid coupling and liquid two-phase flow, specifically designed for oil boom containment and control. The DualSPHysics solver is employed for numerical simulations, incorporating optimized SPH techniques and eight different skirt configurations of the oil boom into the numerical model of two-phase liquid interaction. By setting relevant parameters in the SPH code to enhance computational efficiency, the variations in centroid, undulation, and stability of undulation velocity for different oil boom shapes are observed. The experimental results demonstrate that the improved oil boom exhibits superior oil containment performance. These findings provide a theoretical basis for the design of oil boom skirt structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.