Abstract
Abstract The present research aimed to electrodeposit and characterize Ni-W alloys for different technological parameters, being an example of “induced co-deposition”, in which a certain metal (for example: Mo, W) can be co-deposited as an alloy, but it cannot be measured in its pure state. The investigated characteristics were the efficiency current, the average thickness, and the structural properties of the obtained deposits. The current efficiency decreases with an increased applied current density, and the tungsten content remains constant at around 11% for different current densities (10 mA·cm−2 and 16 mA·cm−2, respectively). An increase in the temperature of the electrolyte leads to the inclusion of more tungsten. The deposit tungsten content and the current efficiency are directly related to pH. The deposit hardness directly relates to the alloy composition, deposit morphology, and coating thickness. The higher hardness, approximatively 100 HV were measured and the optimal brightness were observed for the alloys obtained at increased current density (i = 16 mA·cm−2, T = 50°C, pH = 8), or to a basic pH (i = 10 mA·cm−2, T = 50°C, pH = 9.23). The scanning electron microscopy (SEM) technique was used to analyze the surface morphology, and energy dispersive spectroscopy (EDS) analysis was carried out to determine the composition of the alloys. The metallic surface brightness (%) was evaluated using the miniature spectrometer, based on the reflection property of the electrodeposited metallic layer, scanning the all-wavelength range between 200-1100 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.