Abstract

A novel drive method is proposed to increase the vibration amplitude of drive mode of silicon vibratory gyroscopes based on the nonlinear dynamics research made in this paper. A nonlinear dynamic equation, considering the nonlinear mechanical-elastic and electrostatic force, was firstly deduced according to the simplified structure schematic of drive mode. Then, experiments were made to characterize the nonlinear amplitude-frequency response characteristic as well as its dependence on drive voltage. Besides, by solving the nondimensional nonlinear dynamics using Matlab and Simulink, the influence of initial status of drive mode, that is, the displacement and the velocity, on the stable vibration amplitude was presented. The amplitude-frequency characteristic was also analyzed by simulation. The result of simulation shows good agreement with that of experiments. When nonlinearity is present in the amplitude-frequency characteristic, there is a wide flat region with larger amplitude than the peak amplitude obtained in the linear characteristic. Finally, a novel drive method was presented to excite the nonlinear vibration of large amplitude in the downwards-sweeping characteristic curve. It is numerically proved that this merit can be utilized to enlarge the drive mode’s vibration amplitude so as to enhance silicon gyroscopes’ performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.