Abstract

Lateral vibration equations of fluid-conveying pipes system are high order partial differential equations, and the analytic solution is difficult to obtain, so in this paper the numerical solution is obtained by the finite element method. Firstly, the finite element equations of lateral vibration of fluid-conveying pipes were set up, and four kinds of boundary constraints were proposed. The modal analysis of vibration system was carried out by using mode decomposition method, and the system responses were solved by using Newmark method. The impact of pipe span, flow rate, fluid pressure, flow rate disturbance and fluid pressure disturbance on the modes and responses of vibration system were studied. The research results provided theoretical support for the vibration reduction research of fluid-conveying pipes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.