Abstract

Part cleaning is very important for the assembly of precision machinery. After cleaning, the parts are randomly distributed in the collection area, which makes it difficult for a robot to collect them. Common robots can only collect parts located in relatively fixed positions, and it is difficult to adapt these robots to collect at randomly distributed positions. Therefore, a rapid part classification method based on a non-pooling YOLOv5 network for the recognition of randomly distributed multiple types of parts is proposed in this paper; this method classifies parts from their two-dimensional images obtained using industrial cameras. We compared the traditional and non-pooling YOLOv5 networks under different activation functions. Experimental results showed that the non-pooling YOLOv5 network improved part recognition precision by 8% and part recall rate by 3% within 100 epochs of training, which helped improve the part classification efficiency. The experiment showed that the non-pooling YOLOv5 network exhibited improved classification of industrial parts compared to the traditional YOLOv5 network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call