Abstract

The characteristic scale of flow in micro–nanochannels is generally in the range of 0.01 μm∼1 μm. When crude oil passes through micro-nano channels and tight reservoirs, it shows obvious nonlinear seepage characteristics, which does not conform to the continuity assumption of fluid. Therefore, a non-Newtonian model of crude oil flowing in micro-nano channels and tight reservoirs under the action of shear stress is established, and the relationship between flow rate and apparent viscosity and shear rate is analyzed. The experiment of crude oil flow in micro-nano channels and tight oil reservoir cores shows that the model can be used to describe the nonlinear seepage law of liquid through the nonlinear fitting. The power law index of the oil-phase power-law non-Newtonian fluid is greater than 1 at the micro-nano scale, which conforms to the flow characteristics of the expansive fluid, thus verifying the effectiveness of the non-Newtonian model. In addition, the study of apparent viscosity and shear rate of non-Newtonian fluid shows that the increasing and decreasing trends of flow rate and shear rate and the changing trends of flow rate and pressure gradient are consistent, and shear rate can be used to describe the characteristics of fluid instead of the pressure gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call