Abstract

Simultaneous removal of NOx and SO2 is carried out by an oxidation-absorption process, which NO oxidized by active hydroxyl radicals (·OH) derived from catalytic decomposition of vaporized H2O2 over Fe3O4/TiO2 and then adsorbed by NaOH solution along with SO2. Fe3O4/TiO2 synthesized by wet impregnation method with an additional reduction under H2 atmosphere was characterized by XRD, FTIR, BET, XPS, and VSM analysis. Effects of H2O2 concentration, H2O2 injection rate, reaction temperature, gas flow rate, and flue gas component on simultaneous removal were investigated. The experimental results show that NO can be effectively oxidized by highly reactive ·OH radicals generated from H2O2 decomposition over Fe3O4/TiO2 catalyst, and removal efficiencies of 93.31% for NO, 85.90% for NOx, and 100% for SO2 were obtained. The surface zero-valent iron (Fe0) and divalent iron (Fe2+) are the key factors of the catalytic oxidation with hydroxyl radical. H2O2 adsorption and dissociation mechanism on catalyst surface was studied using DFT calculation. The calculation results demonstrate that H2O2 prefers to dissociate on iron containing surface, and ·OH radicals generation follow by Haber-Weiss (H-W) mechanism. The stable oxidative product of HNO2 and HNO3 were generated through NO/NO2 and H2O2 co-adsorption on the FeO/TiO2 (0 0 1) surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.