Abstract

Nonlinear crystal frequency conversion imaging with direct detection by silicon-based detectors is an effective way to break through the limitations for existing near-infrared (NIR) detectors with expensive cost and high noise. In this paper, a broadband NIR detector imaging scheme based on the principle of nonlinear crystal frequency conversion (NCFCP) was proposed. A thin film of nonlinear crystal frequency conversion material (NCFCM) combined with a silicon-based detector was used to form a broadband NIR detector. The theoretically investigated energy transfer function was used as a guidance for experiment. Meanwhile, the relationship between the imaging effect and the energy transfer of the NCFCP-based compact broadband NIR detector in the NIR band was measured experimentally. The accuracy of the theoretical study had been verified by the measured transfer results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.