Abstract

X-ray imaging is a valuable non-destructive tool for examining bronze wares, but the complexity of the coverings of bronze wares and the limitations of single-energy imaging techniques often obscure critical details, such as lesions and ornamentation. Therefore, multiple imaging is required to fully present the key information of bronze artifacts, which affects the complete presentation of information and increases the difficulty of analysis and interpretation. Using high-performance image fusion technology to fuse X-ray images of different energies into one image can effectively solve this problem. However, there is currently no specialized method for the fusion of images of bronze artifacts. Considering the special requirements for the restoration of bronze artifacts and the existing fusion framework, this paper proposes a new method. It is a novel multi-scale morphological gradient and local topology-coupled neural P systems approach within the Non-Subsampled Shearlet Transform domain. It addresses the absence of a specialized method for image fusion of bronze artifacts. The method proposed in this paper is compared with eight high-performance fusion methods and validated using a total of six evaluation metrics. The results demonstrate the significant theoretical and practical potential of this method for advancing the analysis and preservation of cultural heritage artifacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call