Abstract

In order to disclose the multi-physical field characteristics of the deep coal seam mining process and their dynamic evolution legislation, based on the “rock-coal-rock” model, during the mining process, the stress field, displacement field, energy field, and plastic zone evolution process are all simulated using FLAC3D6.0. The findings show that stress in the original rock is redistributed as a result of coal seam mining, creating a pressure relief zone in the middle of the goaf and advanced support pressure in the front part of the working face. The roof falls following the termination of coal seam mining. The collapsed blocks fill the middle of the goaf, playing a supporting role. The floor bulges as a new supporting pressure zone forms and builds up high elasticity. The stress reduction zone shifts from a rectangular to an inner circular distribution and an outer square as the working face’s mining distance increases and the range of the fracture field expands accordingly. In addition, a complete model was constructed to verify the correctness of the “rock-coal-rock” model. The stress, displacement, and energy curves of the overlying strata at a distance of 12 m from the bottom of the coal seam in the middle of the goaf obtained by the two methods were basically consistent. Ultimately, the findings of the numerical simulation were compared with the advanced support pressure data that were acquired on-site and they were good. This work can provide a reference for the safe mining of deep coal seams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call