Abstract

The problem of multiple DAGs sharing satellite constellation resources has gradually attracted widespread attention. Due to the limited computing resources and energy consumption of satellite networks, it is necessary to formulate a reasonable multi-DAG task scheduling scheme to ensure the fairness of each workflow under the premise of considering latency and energy consumption. Therefore, in this paper, we propose a multi-DAG satellite network task scheduling algorithm based on cache-composite priority under the Software-Defined Networking satellite network architecture. The basic idea of this algorithm lies in the DAG selection phase, where not only are task priorities computed but also the concept of fair scheduling is introduced, so as to prevent the excessively delayed scheduling of low-priority DAG tasks. In addition, the concept of public subtasks is introduced to reduce the system overhead caused by repetitive tasks. The experimental results show that the hybrid scheduling strategy proposed in this paper can meet the demand of DAG scheduling and improve the degree of task completion while effectively reducing the task latency and energy consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call