Abstract
The number of common neighbor between nodes is applied to the modeling of resting-state brain function network in order to analyze the effect of anatomical distance on the modeling of resting-state brain function network. Three models based on anatomical distance, the number of common neighbor, or anatomical distance and the number of common neighbor are designed. Basing on residuals creates the evaluation criteria for selecting the optimal brain function model network in each class model. The model is selected to simulate the human real brain function network by comparison with real data functional magnetic resonance imaging (fMRI) network. Finally, the result shows that the best model only is based on anatomical distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.