Abstract
The present study proposes a double-branch classification network, DPNet (Double Path Net), for the classification and identification of microseismic and blasting signals based on multimodal feature extraction. The vibration signals’ one-dimensional spectrogram and two-dimensional wavelet time–frequency graph are inputted into the double branch network. Subsequently, convolutional neural networks and ResNet are employed to extract the one-dimensional frequency features and two-dimensional time–frequency features of the vibration signals, respectively. Experimental results demonstrate that our proposed method achieves outstanding classification performance with an accuracy of 97.34% for microseismic signals and blasting signals. This research not only provides innovative solutions to practical problems but also introduces a novel idea of multimodal feature extraction at a theoretical level. By successfully applying it to efficiently classify complex signals in mining engineering, we offer a feasible solution that holds promising prospects for practical applications in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.