Abstract

With the deep integration of "AI + medicine", AI-assisted technology has been of great help to human beings in the medical field, especially in the area of predicting and diagnosing diseases based on big data, because it is faster and more accurate. However, concerns about data security seriously hinder data sharing among medical institutions. To fully exploit the value of medical data and realize data collaborative sharing, we developed a medical data security sharing scheme based on the C/S communication mode and constructed a federated learning architecture that uses homomorphic encryption technology to protect training parameters. Here, we chose the Paillier algorithm to realize the additive homomorphism to protect the training parameters. Clients do not need to share local data, but only upload the trained model parameters to the server. In the process of training, a distributed parameter update mechanism is introduced. The server is mainly responsible for issuing training commands and weights, aggregating the local model parameters from the clients and predicting the joint diagnostic results. The client mainly uses the stochastic gradient descent algorithm for gradient trimming, updating and transmitting the trained model parameters back to the server. In order to test the performance of this scheme, a series of experiments was conducted. From the simulation results, we can know that the model prediction accuracy is related to the global training rounds, learning rate, batch size, privacy budget parameters etc. The results show that this scheme realizes data sharing while protecting data privacy, completes the accurate prediction of diseases and has a good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.