Abstract

A nanostructured surface layer is formed on 2219 Al alloy plate by means of supersonic fine particles bombarding (SFPB). The surface microstructure formation mechanism of morphology change is systematically characterized by using scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average grain size of 30nanostructured layer is about 30 nm when the surface of sample is induced by severe plastic deformation. Based on the experimental observations, nanoscale dislocation cells exist in strain layer about 200 from the surface, and we put forward a new formation mechanism of Al alloy surface nanocrystalline layer through theoretical analysis. The original grain is segmented fast into nanoscale dislocation cell or lamellar cell. As the Burgers vector of cell walls continue to accumulate, grain orientation difference constantly increases to form the nanoscale subboundary. Eventually, equiaxed nanocrystallites with random crystallographic orientations are formed by grain rotating or grain boundary sliding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.