Abstract

Recycling of multi-source solid waste is of great benefit to energy conservation and environmental governance. In this paper, a new type of environmental protection concrete for railway accessory facilities was prepared from silicon-manganese slag, steel slag, fly ash and recycled macadam. Seven kinds of concrete with different mix proportions were designed. Through unconfined compressive strength, splitting, drying shrinkage and temperature shrinkage tests, the multivariate changing trends of steel slag content, cement dosage and age on the anti-interference ability of concrete were investigated. The main mechanisms of the development of mechanical and dry shrinkage properties were revealed by the hydration process of 3SR-60. The results show that 3SR-60 had better mechanical strength under the same cement dosage. The temperature shrinkage strain decreased and then increased with the rise of the proportion of waste residue, increased with the addition of cement dosage and decreased first and then increased with the descent in the temperature. The temperature shrinkage coefficient reached the lowest value at 0-10 °C. The drying shrinkage coefficient decreases with the increase in the proportion of waste residue and increases with the increase in cement dosage. The dry shrinkage strain increased rapidly during the first 8 days and became almost constant after 30 days. Cementation of calcium silicate hydrate (C-S-H) and ettringite (AFt) developed continuously and filled the internal pores of the structure, interlocking and cementing with each other, which made the microstructure develop from a three-dimensional network to a dense complex, and the macro dimension was reflected in the enhancement of the power to resist external interference. The conclusion of the test summarized that SR-60 had preferable mechanical and shrinkage performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call