Abstract

This paper studies the measurement of motion parameters of a parachute scanning platform. The movement of a parachute scanning platform has fast rotational velocity and a complex attitude. Therefore, traditional measurement methods cannot measure the motion parameters accurately, and thus fail to satisfy the requirements for the measurement of parachute scanning platform motion parameters. In order to solve these problems, a method for measuring the motion parameters of a parachute scanning platform based on a combination of magnetic and inertial sensors is proposed in this paper. First, scanning motion characteristics of a parachute-terminal-sensitive projectile are analyzed. Next, a high-precision parachute scanning platform attitude measurement device is designed to obtain the data of magnetic and inertial sensors. Then the extended Kalman filter is used to filter and observe errors. The scanning angle, the scanning angle velocity, the falling velocity, and the 2D scanning attitude are obtained. Finally, the accuracy and feasibility of the algorithm are analyzed and validated by MATLAB simulation, semi-physical simulation, and airdrop experiments. The presented research results can provide helpful references for the design and analysis of parachute scanning platforms, which can reduce development time and cost.

Highlights

  • As an important air-to-ground detection platform, the parachute scanning platform has been widely applied to many fields, including air-to-ground weapons and aerial detection

  • After reading the data from the attitude measurement device installed on the simulation turntable, the scanning angle and scanning angular velocity were obtained by the proposed algorithm, and the obtained results are presented in Figure 9 and Figure 10, respectively

  • ATuftrenrtarebaledEinxgptehriemdeantat Rfreosmulttshe attitude measurement device installed on the simulatioAnfttuerrnrteaabdlien, gthtehescdaantnainfrgomantghlee aatntditusdcaenmnienagsuarnegmuelanrtvdeelvoiccietyinwsetarleleodbotanintehde sbiymtuh-e laptrioopnotsuerdntaalbgloer,itthhems,caanndnitnhgeaonbgtlaeinaendd rsecsaunlntsinagreanpgruesleanr tveedloicnitFyigwuerree 9obatnadineFdigbuyreth1e0, prreosppoescetdivaellgyo. rithm, and the obtained results are presented in Figures 9 and 10, respectively

Read more

Summary

Introduction

As an important air-to-ground detection platform, the parachute scanning platform has been widely applied to many fields, including air-to-ground weapons and aerial detection. Research on the measurement methods of the motion parameters of a parachute scanning platform is of great significance for improving its detection performance. The main research objective regarding the terminal-sensitive projectile scanning platform’s motion is to achieve real-time measurement of the motion parameters, such as the steady-state scanning angle, the scanning angular velocity, the falling velocity, and the 2D scanning attitude [9]. Under the assumption that the surrounding geomagnetic field is constant, Zhou et al [10] proposed a method for attitude measurement of a terminal-sensitive projectile based on magnetic sensor data. Aiming at addressing the mentioned problems, this paper proposes a method of motion parameter measuring a parachute scanning platform by using three-axis magnetic sensors, a three-axis gyroscope, and a three-axis accelerometer. FFi)niaslulys,etdhetoseombsie-prvheyasincdalfitultrenrttahbelemseimasuulraetmioennetxeprerorirm, aenndt athnedstchaenaniirndgroapngexlep,esrciamnennint garaencgaurrlaierdvoeluotc,iatyn,dfatlhlienegxvpeelroimciteyn,taanl dre2sDultsscvanerniifnygthaettfietuadsiebairleitoybatnadinaecdc.uFriancaylloyf,tthheepsreompio-psehdyasitctiatlutduernmtaebasleurseimmuenlattmioenthexopde. rInimoerdnterantodotbhteaianirmdroorpe aecxcpuerraitme egnetoamreagcnarertiiecdanodut,inaenrdtiatlheseenxspoerrdimatean,taalsryemsumltestvriecrailfypathraecfheuatseibsicliatnynainndg apclcaut-froarcmy oaftttithuedpermopeoasseudrinagttidtuevdiecemtehaastucraenmeefnfetcmtiveethlyodre.dIunceortdheermtoeaosbutraeimn emntoreerraocrciusrdaetesgiegonmeda.gTnheeticcoanntdriibnuetritoianlosfenthsiosrwdoartak, ias stwymofmoledtr: iAcarlepliaarbalcehauttteitsucdaennmineagspulraetmfoernmt matteitthuodde omf epaasruarcihnugtedsecvaincenitnhgatplcaatnfoermffescitsivperloyproesdeudc,eanthdethmeeparseusreenmteednrteesrurlotsr cisandpesriogvnidede.heTlhpefcuolnrterifberuetniocnesoffotrhitshewdoerksiigsntwanodfoaldn:aAlysrieslioafbpleaarattcihtuudtee smcaeansnuinregmpelnattfmoremthso. dMoofrpeoavraecrh, uactecsucarantneinscgapnlnaitnfogrpmasraismpertoeprsoosefdth, aentdestthseamprpelseesncteadn rheesluplttsociamnpprroovveidtheehdeelpsifgunl reefffeicreienncceys afonrdthreedduecseigtnheanndumanbaelryssoisfopfapraamraechteurtaedsjcuasntnminengtptleasttfso,rtmesst. sMamorpeloevse, ra,nadccluarbaotre ascnadntniminge cmtoiapnsmttffhhheolanyaugeeaeeesvrmoattsatiadgdhsihsnrsmbT,beTaeaiuuegtitothtehrhrlgehaamifrbeeeetmteeesmmfoefyoraaruurrtoeegsmeieoehsssfbsissninnfibootaytotpfetttiingfunohomlatiisiinstsrffreatbchbteyaeevettahpfiaetmhhxxasieisoernipeicptnroeslesfedgdllddfptvsaatppieotbehoaiiecoraannlnonsserodnppeeaeiatdsftpedhedddmtihtarretshr..jnethmu.dopTeiiTidemssEpslhheEbetKstoootemeesyKhehsrrFdmedcagegoFetaaehdnaendasiarsn-sdenentepirmaimgiigthaechnzziennnieoeieeydirs-tntlsdddptspphrptsttiorrshhrorc,aaootdo.oadyetsoscpcueldseafefstiaciuoeosmuccstenxsclcsalrdslldepupnlooooadirtretfwwmftnuaaorthitbchrvissnphSemyn..leeeeleSteIIacoeaatnnasestchnftbiict,ctmotSteSttliuaiheitneetionudurnueccsa3ndledttdiasc.Siimseot3ooeylIeiiagnn.lnmoucmubonItnlS2n2iteofaeoie,ea,atroatScnifrtsthsnotfiaehehuuie5nncoceerrpr.tiedneseaireppFsoomemrn4uitrrnsleni,iciueleemnnattyp4ntnnshccli,ret.ttloaeiieyetppaTannchsds,llllohediegegeirmtnsneoooesroottrusrsaieSefvfmiiu,dlldtetegaaahthlcuurthttottmmtsiittcolreifoii.aoeyittrnvttauuTanehittnenoddobhhhmr6dndnyeeeee-, tihsefumrtahinercvoenrcilfiuesdiobnys athree dariradwronpanedxpfeurtiumreenretsienaSrcehctdioirnec5t.ioFninsaalrlye, ginivSeenc.tion 6, the main conclusions are drawn and future research directions are given

Attitude Measurement
Attitude Measuring Device Characteristics
Position and Falling Velocity Calculation
Attitude Measurement Model Based on Geomagnetic Field
Combined Filter
State Variable Selection and State Equation Establishment
Observation Variable Selection and Observation Equation Establishment
Turntable Experiment Results
Airdrop Experiment Procedure
Experimental Results
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.