Abstract
Based on the magnetorheological (MR) effect of abrasive slurry, the particle-dispersed MR fluid is used as a special instantaneous bond to cohere abrasive particles and magnetic particles so as to form a dynamic, flexible tiny-grinding wheel to polish optical glass, ceramic and other brittle materials of millimeter or sub-millimeter scale with a high efficiency. Experiments were conducted to reveal the effects of different process parameters, such as grain sizes of abrasive particles, machining time, machining gap between the workpiece and the rotation tool, and rotation speed of the tool, on material removal rate of glass surface. The results indicate the following conclusions: material removal rate increases when the grain size of abrasives is similar to that of magnetic particles; machining time is directly proportional to material removal, but inversely proportional to material removal rate; machining gap is inversely proportional to material removal; polishing speed has both positive and negative influence on material removal rate, and greater material removal rate can be obtained at a certain rotation speed. In addition, the difference of the machining characteristics between this new method and the traditional fixed-abrasive machining method is analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.