Abstract

It is of great significance to introduce the conception of a sharing economy into the electricity industry, which can promote the dispatch of multiple integrated energy systems. On the one hand, it is difficult to reveal the behaviors of complex players with multi-energy coupling through the traditional centralized optimization method of single electric energy. On the other hand, the uncertain fluctuations of renewable energy, such as wind power and photovoltaic, have posed great challenges to market transactions. First, the relationship and the functions of all stakeholders in the system are described in this paper, followed by the establishment of flexible resource models such as demand response and energy storage devices. On this basis, a low-carbon dispatching framework of multiple regional gas–electric integrated energy systems is then constructed under the guidance of cooperative game theory. The contribution indexes are established to measure the degree of energy sharing among the subsystems, and the method of asymmetric Nash bargaining is used to settle the interests of each subsystem. Second, a robust optimization model of multiple regional systems is established in response to multiple uncertainties from renewable energy and load. Finally, the numerical example proves that the proposed mechanism can increase the benefits of each integrated energy system player. Moreover, it helps the system to yield optimal benefits in the face of uncertainties and provides a reference on how to realize energy sharing under uncertainties from source load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.