Abstract
Choosing a suitable core loss model and accurately predicting energy loss are crucial in designing magnetic devices with high efficiency based on soft magnetic composites (SMCs). In this work, FeSiAl and FeSi SMCs with a uniform insulating layer were fabricated by a phosphating process. The effects of excitation waveform and DC bias field on core loss have been investigated in depth. The results show that different remagnetization rates of SMC under ideal sinusoidal and square waves result in different core losses at the same frequency and flux density. The improved general Steinmetz equation and the modified Steinmetz equation were shown to be suitable for calculating core loss under square excitation waves without DC bias field. When the DC bias field is applied, the core loss of FeSiAl and FeSi SMCs was found to increase significantly due to the magnetization state gradually approaching saturation. Interestingly, the variation tendency of core loss can be accurately predicted using the waveform coefficient Steinmetz equation under square excitation conditions with a DC bias environment. This work not only provides deep insights into core loss under different excitation waveforms and DC bias fields but also determines the application scope of different core loss models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.