Abstract

The use of tunable metasurface technology to realize the underwater tracking function of submarines, which is one of the hotspots and difficulties in submarine design. The structure-to-sound-field metasurface design approach is a highly iterative process based on trial and error. The process is cumbersome and inefficient. Therefore, an inverse design method was proposed based on parallel deep neural networks. The method took the global and local target sound field feature information as input and the metasurface physical structure parameters as output. The deep neural network was trained using a kernel loss function based on a radial basis kernel function, which established an inverse mapping relationship between the desired sound field to the metasurface physical structure parameters. Finally, the sound field intensity modulation at a localized target range was achieved. The results indicated that within the regulated target range, this method achieved an average prediction error of less than 5 dB for 92.9% of the sample data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.