Abstract

The similarities and differences between the K-means algorithm and the Canopy algorithm’s MapReduce implementation are described in detail, and the possibility of combining the two to design a better algorithm suitable for clustering analysis of large data sets is analyzed in this paper. Different from the previous literature’s improvement ideas for K-means algorithm, it proposes new ideas for sampling and analyzes the selection of relevant thresholds in this paper. Finally, it introduces the MapReduce implementation framework based on Canopy partitioning and filtering K-means algorithm and analyzes some pseudocode in this chapter. Finally, it briefly analyzes the time complexity of the algorithm in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call