Abstract

Taking into account the issues faced by self-driving vehicles in multilane expressway scenarios, a lane-change decision planning framework that considers two adjacent lanes is proposed. Based on this framework, the lateral stability of an autonomous vehicle under near-limit conditions during lane change is studied by the phase-plane method. Firstly, a state-machine-based driving logic is designed and a decision method is proposed to design the lane-change intention based on the surrounding traffic information and to consider the influence of the motion state of other vehicles in the adjacent lanes on the self-driving vehicle. In order to realize adaptive cruising under the full working conditions of the vehicle, a safety distance model is established for different driving speeds and switching strategies for fixed-speed cruising, following driving, and emergency braking are developed. Secondly, for the trajectory planning problem, a lane-change trajectory based on a quintuple polynomial optimization method is proposed. Then, the vehicle lateral stability boundary is investigated; the stability boundary and rollover boundary are incorporated into the designed path-tracking controller to improve the tracking accuracy while enhancing the rollover prevention capability. Finally, a simulation analysis is carried out through a joint simulation platform; the simulation results show that the proposed method can ensure the driving safety of autonomous vehicles in a multilane scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call