Abstract
Knowledge Graphs (KGs) are composed of structured information in the form of entities and relations. And the process of extracting entities and relations from data is called Knowledge Extraction. Knowledge extraction is a fundamental task in the field of Natural Language Processing (NLP) and a key part of knowledge graph construction. In this paper, we provide comprehensive research on knowledge extraction in knowledge graph construction. We first introduce the technical architecture of the KGs and the classification of knowledge extraction. Then, we systematically categorize existing works based on the development of knowledge extraction. Finally, we review current open-source tools for knowledge extraction and summarize their advantages and disadvantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.