Abstract

As a classical clustering algorithm, K-means algorithm has a profound research background. In the of big data era, K-means algorithms will play a greater advantage, being able to quickly divide similar data into the same cluster. Combining K-means algorithm with MapReduce distributed computing framework and running on Hadoop big data platform can significantly improve the clustering effect. Based on MapReduce framework structure, this paper studies K-means model, including K-means principle, distance calculation, content validity index and external validity index. On this basis, the K-means clustering flow based on MapReduce big data programming framework is proposed, and the execution process of the algorithm flow is described in detail, which provides a guide for the algorithm implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.