Abstract

To address the route planning issues under the community group purchase model for joint delivery, this study thoroughly considers electric logistics vehicles with different recharging methods. The objective is to minimize the sum of operating costs, recharging costs, time window penalty costs, and carbon emission costs. Separate multi-objective optimization models for route planning are constructed for both charging and battery-swapping logistics vehicles. An improved seagull optimization algorithm, guided by the golden sine strategy of the Lévy flight guidance mechanism, is employed to avoid local optima and enhance the solution efficiency. The feasibility of the models and the algorithm is verified through simulation examples. Experimental results show that, at the current stage, battery-swapping logistics vehicles display significant advantages over charging electric logistics vehicles. Although battery-swapping logistics vehicles extend delivery time, they can reduce the total delivery costs to a certain extent. Therefore, the future development prospects of battery-swapping logistics vehicles will be even broader.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.