Abstract
In ventilation systems of metal mines, the real-time measurement of the airflow field and a reduction in pollutants are necessary for clean environmental management and human health. However, the limited quantitative data and expensive detection technology hinder the accurate assessment of mine ventilation effectiveness and safety status. Therefore, we propose a new method for constructing a mine intelligent ventilation system with a global scheme, which can realize the intelligent prediction of unknown points in the mine ventilation system by measuring the airflow parameters of multiple known points. Firstly, the nodal wind pressure method combined with the Hardy–Cross iterative algorithm is used to solve the mine ventilation network, and the airflow parameters under normal operation and extreme working conditions are simulated, based on which an intelligent ventilation training database is established. Secondly, we compared the airflow parameter prediction ability of three different machine learning models with different neural network models based on the collected small-sample airflow field dataset of a mine roadway. Finally, the depth learning method is optimized to build the intelligent algorithm model of the mine ventilation system, and a large number of three-dimensional simulation data and field measurement data of the mine ventilation system are used to train the model repeatedly to realize the intelligent perception of air flow parameters of a metal mine ventilation network and the construction of an intelligent ventilation system. The results show that the maximum error of a single airflow measurement point is 1.24%, the maximum overall error is 3.25%, and the overall average error is 0.51%. The intelligent algorithm has a good model training effect and high precision and can meet the requirements of the research and application of this project. Through case analysis, this method can predict the airflow parameters of any position underground and realize the real-time control of mine safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.