Abstract

The segmentation of dental models is a crucial step in computer-aided diagnosis and treatment systems for oral healthcare. To address the issues of poor universality and under-segmentation in tooth segmentation techniques, an intelligent tooth segmentation method combining multiple seed region growth and boundary extension is proposed. This method utilized the distribution characteristics of negative curvature meshes in teeth to obtain new seed points and effectively adapted to the structural differences between the top and sides of teeth through differential region growth. Additionally, the boundaries of the initial segmentation were extended based on geometric features, which was effectively compensated for under-segmentation issues in region growth. Ablation experiments and comparative experiments with current state-of-the-art algorithms demonstrated that the proposed method achieved better segmentation of crowded dental models and exhibited strong algorithm universality, thus possessing the capability to meet the practical segmentation needs in oral healthcare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.