Abstract
With the increase in information on various cloud computing platforms, there are more and more teaching documents and videos, which provide sufficient resources for people to learn. Facing the large-scale digital teaching resources, how to quickly and accurately retrieve the required content has become an important research direction in the information field. Especially in the face of heterogeneous, dynamic, and large-scale teaching resources stored in the cloud computing platform, the traditional cloud computing resource retrieval has poor performance and low work efficiency. To solve this problem, a cloud computing platform retrieval method based on genetic algorithm is proposed, which is suitable for intelligent retrieval of teaching resources. Firstly, the teaching resource storage system based on cloud computing platform is analyzed, and the overall architecture of the system and the network topology of cloud storage data are given. Then, a resource retrieval method suitable for cloud computing platform is designed by genetic algorithm, and the convergence performance of genetic algorithm is improved by ant colony algorithm. Finally, the selection algorithm in genetic algorithm is optimized by using random numbers and increasing the number of cycles. The experimental results show that the proposed intelligent retrieval method has greatly improved the Recall and Precision compared with the traditional retrieval methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.