Abstract
The decision-making model of merging behavior is one of the key technologies of unmanned vehicles. In order to solve the problem of unmanned vehicles’ merging decision making, this paper presents a merging strategy based on Least squares Policy Iteration (LSPI) algorithm, and selects the basis function which includes reciprocal of TTC, relative distance and relative speed to represent state space and discretizes action space. This study synthetically takes consideration o safety, the success of the task, the merging efficiency and comfort in setting reward function, compares the Q-learning with LSPI algorithm, and verifies its adaptability by using NGSIM data. The algorithm can ultimately achieve a success rate of 86%. This research can provide theoretic support and technical basis for the merging decision-making of unmanned vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.