Abstract
Under the premise of coordinated procurement bilateral and multi‐issue negotiation, adaptive negotiation strategy has become an essential factor for multiagent conflict resolution. This paper studies an adaptive negotiation strategy based on selective integrated learning, which effectively improves negotiation. First, take the suppliers and purchasing companies in the cluster supply chain as the research objects and analyze the characteristics of multilateral negotiation of collaborative procurement. Secondly, the support vector machine algorithm performs adaptive learning for each evaluation data set to estimate the concession range. On this basis, remove the few submodels that perform poorly, recombine the calculation weights, and establish a multiagent clustered supply collaborative procurement negotiation model. The simulation experiment proves the feasibility of the adaptive negotiation strategy and the effectiveness of the adaptive coordination strategy based on selective ensemble learning proposed in this paper from the aspects of concession range prediction error rate, prediction accuracy rate, and negotiation utility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Wireless Communications and Mobile Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.