Abstract

Based on the panel data of R&D activities of the provincial high-tech industry in China from 1998 to 2014, this paper adopts the spatial weight matrix of different dimensions including geographical distance, technical distance, economic distance, proximity distance, and human capital distance, to construct a spatial econometric model to analyze the knowledge spillover effects of R&D activities through both local and transnational routes. The results show that in the case of spatial auto-correlation of the dependent variables, the results of the spatial panel model are more accurate and reliable than those obtained by the conventional panel model. The spatial coefficients of the spatial econometric model based on five different spatial weight matrices are all very significant, and there is a clear spatial correlation between the R&D activities of high-tech industries in different regions. Labor input and exports have a positive impact on innovation output, but the introduction of technology will hinder independent innovation in China’s high-tech industry, and the impact of capital investment to innovation output is uncertain, as it closely relates to the set of models. In addition, the space knowledge spillover effect through the local approach is larger than that produced by the transnational route.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call