Abstract

Influenced by the rapid development of artificial intelligence, the identification of chaotic systems with intelligent optimization algorithms has received widespread attention in recent years. This paper focuses on the intelligent information identification of chaotic maps with multi-stability properties, and an improved sparrow search algorithm is proposed as the identification algorithm. Numerical simulations show that different initial values can lead to the same dynamic behavior, making it impossible to stably and accurately identify the initial values of multi-stability chaotic maps. An identification scheme without considering the initial values is proposed for solving this problem, and simulations demonstrate that the proposed method has the highest identification precision among seven existing intelligent algorithms and a certain degree of noise resistance. In addition, the above research reveals that chaotic systems with multi-stability may have more potential applications in fields such as secure communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call