Abstract

When the hydrostatic thrust bearings operate under conditions of high speed and heavy load, the oil film will be strongly sheared and squeezed, which will increase the temperature of the hydrostatic oil film, resulting in uneven deformation of the workbench and tribology in serious cases. The deformation of the friction pair greatly affects the stability of the workbench during operation, and then affects the machining accuracy. Taking the hydrostatic thrust bearings as the research object, the model of hydrostatic thrust bearings was established based on the fluid–thermosolid coupling theory, and the influencing factors of the deformation of the hydrostatic thrust bearings are analyzed using ANSYS Workbench software, and the influencing laws are discussed. Finally, the correctness of the simulation method is verified by experiments. The results show that the larger the lubricating oil viscosity, the greater the deformation of the guide surface and the oil pad. With the increase in the rotation rate, the deformation of the guide surface and the oil pad increases continuously. With the increase in the inlet flow rate, the deformation of the guide surface and the oil pad is continuously reduced. In engineering practice, on the premise of ensuring the bearings capacity, low-viscosity lubricating oil should be used as much as possible, the rotation rate should be lower, or the inlet flow rate should be increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call