Abstract

Abstract Due to the influence of crystal vibration, clock offset, and clock skew, time synchronization error will be caused. This study introduces several algorithms to reduce or eliminate the influence of time synchronization error on positioning results, including iterative time-of-arrival algorithm, linear position line algorithm, classical CHAN algorithm, quadratic programming algorithm, and an improved algorithm for quadratic programming problem using weighted least squares algorithm. They are applied to two-dimensional (2D) single target, 2D multi-target, three-dimensional, and various positioning scenarios considering the influence of clock skew and clock offset for the simulation test, which overcomes the defect that the previous algorithm simulation test has few application scenarios. The results show that the iterative time-of-arrival algorithm has smaller root mean square error, higher positioning accuracy, and stable positioning results, and the algorithm has universal applicability to each positioning scene with time synchronization error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.