Abstract
In order to further improve the enthusiasm of spatial crowdsourcing workers, considering the service quality of workers, different incentive strategies are proposed and tasks are assigned. Firstly, the incentive model is constructed from the unit time revenue of task and online idle time, and the evaluation function of the evaluation model is constructed; Secondly, the task allocation is transformed into a combinatorial optimization problem by delay matching, and an improved glowworm swarm algorithm is proposed to solve the problem by discrete coding, introducing six kinds of mobile modes, adaptive probability matching and infeasible solution processing; Finally, the algorithm is used to solve the task allocation. The experimental results show that compared with the travel cost minimization strategy and random allocation strategy, the positive incentive index of the proposed strategy is improved by 11.79% and 14.60% respectively, and the fair incentive index is improved by 0.83% and 0.22% respectively, which can effectively improve the positive incentive range and incentive fairness of workers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.