Abstract

<abstract> <p>An optimization algorithm for federated learning, equipped with an incentive mechanism, is introduced to tackle the challenges of excessive iterations, prolonged training durations, and suboptimal efficiency encountered during model training within the federated learning framework. Initially, the algorithm establishes reputation values that are tied to both time and model loss metrics. This foundation enables the creation of incentive mechanisms aimed at rewarding honest nodes while penalizing malicious ones. Subsequently, a bidirectional selection mechanism anchored in blockchain technology is developed, allowing smart contracts to enroll nodes with high reputations in training sessions, thus filtering out malicious clients and enhancing local training efficiency. Furthermore, the integration of the Earth Mover's Distance (EMD) mechanism serves to lessen the impact of non-IID (non-Independent and Identically Distributed) data on the global model, leading to a reduction in the frequency of model training cycles and an improvement in model accuracy. Experimental results confirm that this approach maintains high model accuracy in non-IID data settings, outperforming traditional federated learning algorithms.</p> </abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call