Abstract

The in-vivo electron paramagnetic resonance (EPR) method can be used for on-site, rapid, and non-invasive detection of radiation dose to casualties after nuclear and radiation emergencies. For in-vivo EPR spectrum analysis, manual labeling of peaks and calculation of signal intensity are often used, which have problems such as large workload and interference by subjective factors. In this study, a method for automatic classification and identification of in-vivo EPR spectra was established using support vector machine (SVM) technology, which can in-batch and automatically identify and screen out invalid spectra due to vibration and dental surface water interference during in-vivo EPR measurements. In this study, a spectrum analysis method based on genetic algorithm optimization neural network (GA-BPNN) was established, which can automatically identify the radiation-induced signals in in-vivo EPR spectra and predict the radiation doses received by the injured. The experimental results showed that the SVM and GA-BPNN spectrum processing methods established in this study could effectively accomplish the automatic spectra classification and radiation dose prediction, and could meet the needs of dose assessment in nuclear emergency. This study explored the application of machine learning methods in EPR spectrum processing, improved the intelligence level of EPR spectrum processing, and would help to enhance the efficiency of mass EPR spectra processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.