Abstract

To achieve the highest possible integration storage density in the V-point structure, the working current of the selector in the one-selection one-resistance (1S1R) structure should match with the resistance random access memory (RRAM). In this study, a selector device is designed with a Ti/NbOx/Ti/Pt structure through the magnetron sputtering method and achieves excellent performance of threshold switching under ultra-large compliance current (CC) up to 100 mA. Furthermore, both the switching voltages and the OFF-state resistance of the device demonstrate excellent stability even when CC is increased to a milliampere level, attributed from the existence of metallic NbO in the switching layer. This study provides evidence that a Ti/NbOx/Ti/Pt device has a great potential to drive RRAM in the V-point structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.