Abstract

In satellite positioning systems, optimizing navigation satellite constellation and reducing the observation residuals are usually adopted to improve positioning precision and accuracy of the receiver. This paper presents a method to improve positioning precision by using multi-frequency navigation signals. The observation data of CAPS and GPS system are used to simulate the experiment. When the number of downlink frequencies is different, the root mean square of positioning error, improvement percentage, and standard deviation are calculated, respectively. When the number of descending frequencies is k, the root mean square of positioning error in three-dimensional space is 1/ of that in single frequency. The theoretical derivation and experiment show that the precision of satellite positioning can be effectively improved by using multi-frequency navigation signals. The research work can provide theoretical support and data reference for the future research of satellite positioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.