Abstract

In this paper, the effect of rotating magnetic fields on hydrogen generation from water electrolysis is analyzed, aiming to provide a research reference for hydrogen production and improving hydrogen production efficiency. The electrolytic environment is formed by alkaline solutions and special electrolytic cells. The two electrolytic cells are connected to each other in the form of several pipes. The ring magnets are used to surround the pipes and rotate the magnets so that the pipes move relative to the magnets within the ring magnetic field area. Experimentally, the electrolysis reaction of an alkaline solution was studied by using a rotating magnetic field, and the effect of magnetic field rotation speed on the electrolysis reaction was analyzed using detected voltage data. The experimental phenomenon showed that the faster the rotation speed of the rotating magnetic field, the faster the production speed of hydrogen gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call