Abstract

In this paper, based on the joint laboratory of Mechanics Test Center of Nanjing University of Science and Technology and Walter+Bai, the PTFE coated fabric film material is taken as the test object, and the A/D signal exchange between the numerical substructure and the experimental substructure is realized by PMI serial port program, and the hybrid simulation static test is carried out. The phenomenon that the supporting structure of the frame is deformed due to the interaction in the tension process of the membrane structure is simulated, and then the unloading effect on the membrane surface is produced. The test results show that the communication performance of PMI serial port program is good, and the time consumption produced by signal exchange process can be ignored. The accuracy and stability of the hybrid simulation test system are verified by comparing the mixed simulation test results with the pure numerical simulation theoretical solution. Through the comprehensive analysis of the test data such as stress, strain, displacement, loading and unloading times, some suggestions are put forward for the design of membrane and frame composite structure.

Highlights

  • the PTFE coated fabric film material is taken as the test object

  • the experimental substructure is realized by PMI serial port program

  • The test results show that the communication performance of PMI serial port program is good

Read more

Summary

Introduction

Technology and Walter+Bai, the PTFE coated fabric film material is taken as the test object, and the A/D signal exchange between the numerical substructure and the experimental substructure is realized by PMI serial port program, and the hybrid simulation static test is carried out. 膜结构因其质轻、透光、建筑表现力强等优点,被 广泛应用于现代建筑中。膜结构按照产生预张力的方式 不同可分为三类:充气式膜结构、张拉式膜结构以及骨 架支承式膜结构。张拉膜结构是将高强薄膜材料通过张 拉固定的方式使其内部产生预应力以形成某种空间结构 形式,作为覆盖结构,并承受一定的外荷载作用[1],如 图1。张拉膜结构是最能展现膜结构精神的构造形式,结 构性能强,且具有丰富的表现力。膜结构体系在张拉成 形的过程中经历了三个状态,分别是:无预应力的松弛 机构状态、逐步施加预应力过程到结构找形状态、预应 力张拉完成的结构成形状态[2]。逐步施加预应力的过程 就是膜结构刚度不断发生变化,同时结构形态和受力特 性也不断发生变化的过程。在这个过程中,由于膜与以 框架为代表的支承体系间具有相互作用,框架受力后逐 渐产生变形,如图2。边界条件的改变使得膜结构原有的 平衡态被打破,膜与框架产生协同变形,进而引起膜内 应力重分布,以达到新的平衡态。张拉膜结构最终的位 移、应力水平是整个张拉过程各个阶段位移、应力不断 变化和累积的结果[3],因此框架的变形必然对结构的最 终成形状态产生影响。 目前,在进行张拉膜结构设计时并不太注重框架支承 体系的变形分析,而是简单地增加支承体系的材料用量以 增大支承体系的刚度和支撑能力。这是因为膜材是强非线 性材料,其本构关系受到多种因素影响且难以采用 ANSYS等有限元软件进行数值模拟[4],无法在设计过程 中高效、准确地预测膜与框架之间的协同变形。单纯增加 支承体系材料用量的做法不但会造成材料的盲目浪费,在 某些对设备或构筑物有重量限制的场合如军用设施中,也 无法满足设计要求。

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call