Abstract

Wireless and power line communication hybrid relay technology can realize complementary advantages and comprehensively improve the communication coverage and performance of power Internet of Things. In order to study the mechanism of the physical layer and Media Access Control (MAC) layer algorithm that affects the performance of hybrid relay systems, the cross-layer performance modeling, optimization, and simulation analysis are carried out for the non-orthogonal multiple access (NOMA) technology. Firstly, a two-hop NOMA media access control protocol is designed based on the CSMA algorithm. Considering the effects of non-ideal channel transmission at the physical layer and competitive access at the MAC layer on the system performance, a cross-layer performance analysis model of hybrid wireless and power line communication relay system under NOMA is established. Finally, a cross-layer optimization model based on multi-objective programming is established for the hybrid relay system. By analyzing the relationship between transmitting power and performance index, the joint optimization of transmitting power and power distribution factor between users is realized. Simulation results verify the validity and reliability of the proposed cross-layer model. The results show that the hybrid relay algorithm combined with NOMA and CSMA can effectively improve the performance of the system throughput, packet loss probability, and delay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call