Abstract

The service environment of civil air defense engineering structures is relatively harsh, and the corrosion of steel bars is the main reason for reducing the durability of concrete structures in civil air defense engineering. A hybrid FRP–steel-reinforced concrete (hybrid-RC) structure has excellent durability. Therefore, it is a good choice to apply hybrid-RC to civil air defense engineering structures. In order to study the blast resistance of hybrid-RC structures, close blast and contact blast experiments were carried out on hybrid-RC slabs, steel-reinforced concrete (SRC) slabs and GFRP-reinforced concrete (GRC) slabs. For the close blast experiment, the steel reinforcement in the SRC slab first entered the plasticity stage, whereas the GFRP reinforcement in the hybrid-RC slab was in the elastic stage under the close blast. Therefore, the capacity to dissipate energy through the vibration in the hybrid-RC slab was better than that of the SRC slab. The residual deformation in the hybrid-RC slab after the close blast experiment was smaller than that of the SRC slab. The Blast Recovery Index (BRI) was introduced to evaluate the recovery capacity of the concrete slab after the close blast, and damage assessment criteria for the hybrid-RC slabs were proposed according to the maximum support rotation θm and BRI. There was little difference in the size of the local damage in the hybrid-RC slab and the SRC slab under the contact blast. However, since the GFRP reinforcement was still in the elastic stage and the steel reinforcement was plastic after the contact blast, the ratio of the residual bearing capacity to the original bearing capacity in the hybrid-RC concrete slab would be larger than that of the SRC slab. The prediction formula for the top face diameter D and blasting depth L of the hybrid-RC slab was obtained through dimensionless analysis. This research can provide a reference for the anti-blast design of hybrid-RC slabs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call