Abstract
Aiming at the problems of low recognition rate and slow recognition speed of traditional body action recognition methods, a human action recognition method based on data deduplication technology is proposed. Firstly, the data redundancy technology and perceptual hashing technology are combined to form an index, and the image is filtered from the structure, color, and texture features of human action image to achieve image redundancy processing. Then, the depth feature of processed image is extracted by depth motion map; finally, feature recognition is carried out by convolution neural network so as to achieve the purpose of human action recognition. The simulation results show that the proposed method can obtain the optimal recognition results and has strong robustness. At the same time, it also fully proves the importance of human motion recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.