Abstract
In recent years, the low Earth orbit microsatellite network technology has experienced rapid development due to its advantages of low latency, low cost, and short development cycles. However, building an efficient and reliable satellite network routing system faces many challenges due to the characteristics of satellite networks, such as fast‐changing topology, large variations in link latency, higher probabilities of node and link failures, and limited resources. Routing algorithms have a significant impact on intersatellite communication and have become a research hotspot. The current mainstream algorithms focus on reducing information propagation delays between satellites to enable faster transmission. However, many satellite networks, such as meteorological observation satellite networks, are not sensitive to propagation delays but emphasize reducing hardware costs, especially for the receiving and transmitting signal systems of satellites. This means minimizing the single‐step signal transmission distance of satellites. This article proposes a routing algorithm based on time slot planning and the shortest path step length. Experimental simulation results demonstrate that this algorithm significantly reduces the step length of signal transmission and lowers hardware costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.